We are all familiar with the sayings “a picture is worth a thousand words” and “seeing is believing”. Not only do they apply to our daily lives, but certainly also to the natural sciences. Therefore, it is probably not by chance that the historical beginning of modern natural sciences very much coincides with the invention of light microscopy. With the light microscope, mankind was able to see for the first time that every living being consists of cells as basic units of structure and function; bacteria were discovered with the light microscope, and also mitochondria, as examples of subcellular organelles.

However, we learned in high school that the resolution of a light microscope is limited to about half the wavelength of the light in use,[1–4] which typically amounts to about 200–350 nanometers (Figure 1). If we want to see details of smaller things, such as viruses for example, we have to resort to electron microscopy.

Electron microscopy has achieved a much higher spatial resolution—ten-fold, hundred-fold, or even thousand-fold higher; in fact, down to the size of a single molecule. Therefore, the question comes up: Why do we care about the light microscope and its spatial resolution, now that we have the electron microscope?

The answer to this question is given in Figure 2, where I’ve conducted a small “experiment”. I counted the numbers of papers published in this issue of *Nature Medicine* where a light microscope was used, and where an electron microscope was used. The clear winner was light microscopy, which has remained the most popular microscopy technique in the life sciences. This is for two strong reasons.

The first reason is that light microscopy is the only way in which we can look inside a living cell, or even living tissues, in three dimensions; it is minimally invasive. But, there is another reason. When we look into a cell, we are usually interested in a certain species of proteins or other biomolecules, and we have to make this species distinct from the rest—we have to “highlight” those proteins.[5] This is because, to light or to electrons, all the proteins look the same.

In light microscopy, this “highlighting” is readily feasible by attaching a fluorescent molecule to the biomolecule of interest.[6] Importantly, a fluorescent molecule (Figure 2)[7] has, among others, two fundamental states: a ground state
and an excited fluorescent state with higher energy. If we shine light of a suitable wavelength on it, for example green light, it can absorb a (green) photon so that the molecule is raised from its ground state to the excited state. Right afterwards, the atoms of the molecule wiggle a bit—that is why the molecules have vibrational substates—but within a few nanoseconds, the molecule relaxes back to the ground state by emitting a fluorescence photon.

Because some of the energy of the absorbed (green) photon is lost in the wiggling of the atoms, the fluorescence photon is red-shifted in wavelength, shown as orange in Figure 2. This is actually very convenient, because we can now easily separate the fluorescence from the excitation light, the light with which the cell is illuminated. This shift in wavelength makes fluorescence microscopy extremely sensitive. In fact, it can be so sensitive that one can detect a single molecule, as has been discovered through the works of my co-laureate W. E. Moerner,\[8\] of Michel Orrit,\[9\] and their co-workers.

However, if a second molecule, a third molecule, a fourth molecule, a fifth molecule, and so on are positioned closer together than about 200–350 nanometers, we cannot tell them apart, because they appear in the microscope as a single blur. Therefore, it is important to keep in mind that resolution is about telling features apart; it is about distinguishing them. Resolution must not be confused with sensitivity of detection, because it is about seeing different features as separate entities.

Now it is easy to appreciate that a lot of information is lost if we look into a cell with a fluorescence microscope: anything that is below the scale of 200 nanometers appears blurred. Consequently, if one manages to come up with a focusing (far-field) fluorescence microscope which has a much higher spatial resolution, this would have a tremendous impact in the life sciences and beyond.

In a first step, we have to understand why the resolution of a conventional light-focusing microscope is limited. In simple terms, it can be explained as follows. The most important element of a light microscope is the objective lens (Figure 3). The role of this objective lens is simply to concentrate the light in space, to focus the light down to a point. However, because light propagates as a wave, it is not possible for the lens to concentrate the light in a single point. Rather, the light will be diffracted, “smeared out” in the focal region, forming a spot of light which is—at minimum—about 200 nanometers wide and about 500 nanometers along the optical axis.\[10\]

This has a major consequence: if several features fall within this region, they will all be flooded with this light at the same time and hence produce a signal simultaneously. In the case of fluorescence microscopy, this is the excitation light. As we try to detect the fluorescence signal with a lens and relay it onto a detector, the signals produced by the molecules within this diffraction-limited region are illuminated together, emit virtually together, and cannot be told apart.

Now it is easy to appreciate that a lot of information is lost if we look into a cell with a fluorescence microscope: anything that is below the scale of 200 nanometers appears blurred. Consequently, if one manages to come up with a focusing (far-field) fluorescence microscope which has a much higher spatial resolution, this would have a tremendous impact in the life sciences and beyond.

Figure 2. Light microscopy remains the most popular microscopy method in the life sciences, because of a number of distinct advantages such as live-cell imaging and biomolecular specificity. The latter is provided by labeling the biomolecules of interest with fluorescent markers, thus allowing their species-specific detection in the microscope.

Figure 3. Focusing of light by the microscope (objective) lens cannot occur more tightly than the diffraction (Abbe’s) limit. As a result, all molecules within this diffraction-limited region are illuminated together, emit virtually together, and cannot be told apart.
of the same kind have to be further apart than the wavelength divided by twice the numerical aperture of the objective lens. One can find this equation in most textbooks of physics or optics, and also in textbooks of biochemistry and molecular biology, due to the enormous relevance of light microscopy in these fields. Abbe’s equation is also found on a memorial which was erected in Jena, Germany, where Ernst Abbe lived and worked, and there it is written in stone. This is what scientists believed throughout the 20th century.

However, not only did they believe it, it also was a fact. For example, if one wanted to look at features of the cellular cytoskeleton in the 20th century, this was the type of resolution obtained (Figure 4, bottom, “Confocal?”). But now, today, we get the resolution shown in Figure 4 (middle, “STED”), and this resolution has become a new standard. So what I describe in this lecture is how this transition was made, from the previous diffraction-limited resolution to resolution far beyond the diffraction barrier.

It started out in the late 1980s. I was a student in Heidelberg in those days, and I worked in the research area of light microscopy, so I was of course familiar with Abbe’s equation. I began wondering: This equation was coined in 1873, and yet it is now 1990. So much new physics emerged during the 20th century and so many new phenomena were discovered—as a matter of fact, I had to learn so much for my examinations! There should be phenomena—at least one—that could be utilized to overcome the diffraction barrier in a light microscope operating with propagating beams of light and regular lenses.

Well, I understood that it won’t work just by changing the way the light is focused. (Actually I had looked into that; it led me to the invention of the 4Pi microscope,[11,12] which improved the axial resolution, but did not overcome Abbe’s barrier.) I was convinced that a potential solution must have something to do with the major discoveries of the 20th century: quantum mechanics, molecules, molecular states, and so on. Therefore, I started to check my textbooks again in order to find something that could be used to overcome the diffraction barrier in a light-focusing microscope.

One day I put my ideas about solving the problem down in writing (Figure 5). In simple terms, the idea was to check out the spectroscopic properties of fluorophores, their state transitions, and so on, specifically to solve the resolution problem. Until then, they had been used only for fluorescence signal generation or to measure pH or calcium concentrations, etc. But maybe there was a property that could be used for the purpose of making Abbe’s barrier obsolete. Alternatively, there could be a quantum–optical effect whose potential had not been realized, simply because nobody thought about overcoming the diffraction barrier.[13]

With these ideas in mind, one day when I was not very far from here in Åbo/Turku, just across the Gulf of Bothnia, on a Saturday morning, I browsed a textbook on quantum optics[14] and stumbled across the page shown in Figure 5. It dealt with stimulated emission. All of a sudden I was electrified. Why?

To reiterate, the problem is that the lens focuses the light in space, but not more tightly than 200 nanometers. All the features within the 200 nanometer region are simultaneously flooded with excitation light. This cannot be changed, at least not when using conventional optical lenses. But perhaps we can change the fact that all the features which are flooded with (excitation) light are, in the end, capable of sending light (back) to the detector. If we manage to keep some of the molecules dark—to be precise, put them in a nonsignaling...
state in which they are not able to send light to the detector—we will see only the molecules that can, that is, those in the bright state. Hence, by registering bright-state molecules as opposed to dark-state molecules, we can tell molecules apart.

So the idea was to keep a fraction of the molecules residing in the same diffraction area in a dark state for the period of time in which the molecules residing in this area are detected. In any case, keep in mind: the state (transition) is the key to making features distinct, and resolution is about discerning features.

For this reason, the question comes up: are there dark states in a fluorescent molecule? The answer has actually been given in the energy diagram shown in Figure 2, reiterated in Figure 6b. The ground state of the fluorophore is a dark state! For the molecule to emit fluorescence, the molecule has to be in its excited state. So the excited state is the signaling bright state, but the ground state is, of course, a nonsignaling dark state.

What is now the role of stimulated emission? Actually, the answer is as simple as it is profound: it makes dark molecules, that is, molecules that are not seen by the detector! This was the reason why I was so excited. I had found a way to make normal fluorophores not fluoresce, just normal fluorophores that were commonly used in fluorescence microscopy. Now you can easily envisage how the microscope works: stimulated emission depletion—or STED—microscopy.[15–23]

Figure 7a sketches the lens, the critical component of a far-field optical microscope, as well as a sample and a detector. We use a beam of light for exciting molecules from the ground state to the excited state, to make them bright (“on”), that is, get them to the excited state. Inevitably, the excitation light will be diffracted and one obtains a spot of light of at least 200 nanometres. Signal which is produced therein, from all the molecules, will be able to end up at the detector. But now, we use a second beam of light which induces stimulated emission, and thus makes dark-state molecules. The idea is to instantly “push” the molecules that were excited back down to the ground state so that the molecule is not capable of emitting light, because it has assumed the dark ground state (“off”).

The physical condition for achieving this is that the wavelength of the stimulating beam is longer (Figure 7c). The photons of the stimulating beam have a lower energy, so as not to excite molecules but to stimulate the molecules going from the excited state back down to the ground state. There is another condition, however: we have to ensure that there is indeed a red photon at the molecule which pushes the molecule down. I am saying this because most photons pass by the molecules, as there is a finite interaction probability of the photon with a molecule, that is, a finite cross-section of interaction. But if one applies a stimulating light intensity at or above a certain threshold, one can be sure that there is at least one photon which “kicks” the molecule down to the ground state, thus making it instantly assume the dark state.

Figure 7d shows the probability of the molecule to assume the bright state, the state, in the presence of the STED beam that transfers the molecule to the dark ground state. Beyond a certain threshold intensity, the molecule is clearly turned “off”. One can apply basically any intensity of green light. Yet, the molecule will not be able to occupy the bright state and thus not signal.

Now the approach is clear: we simply modify this red beam to have a ring shape in the focal plane.[19, 24] such that it does not carry any intensity at the center. Thus, we can turn off the fluorescence ability of the molecules everywhere but at the center. The ring or “donut” becomes weaker and weaker towards the center, where it is ideally of zero intensity. There, at the center, we will not be able to turn the molecules off, because there is no STED light, or it is much too weak.

Now let’s have a look at the sample (Figure 7b) and let us assume that we want to see just the fiber in the middle. Therefore, we have to turn off the fiber to its left and the one to its right. What do we do? We cannot make the ring smaller, as it is also limited by diffraction. Abbe would say: “Making narrower rings of light is not possible due to diffraction”. But we do not have to do that. Rather, we simply have to “shut off” the molecules of the fibers that we do not want to see, that is, we make their molecules dwell in a dark state, until we have recorded the signal from that area. Obviously, the key lies in the preparation of the states. So what do we do? We make the beam strong enough so that the molecules even very
close to the center of the ring are turned “off” because they are effectively confined to the ground state all the time. This is because, even close to the center of the ring, the intensity is beyond the threshold I_s in absolute terms.

Now we succeed in separation: only in the position of the donut center are the molecules allowed to emit, and we can, therefore, separate this signal from the signal of the neighboring fibers. Now we can acquire images with subdiffraction resolution: we can move the beams across the specimen and separate each fiber from the other, because their molecules are forced to emit at different points in time. We play an “on/off game”.

Within the much wider excitation region, only a subset of molecules that are at the center of the donut ring are allowed to emit at any given point in time. All the others around them are effectively kept in the dark ground state. Whenever one makes a check which state they are in, one will nearly always find those molecules in the ground state.

This concept turned out to work very well.[17, 19, 23, 25] Figure 8a contains a standard, high-end confocal recording of something which one cannot make out what it is. Figure 8b shows the same region imaged using STED microscopy. The resolution is increased by about an order of magnitude (in the red channel), and one can clearly discern what is actually being imaged here: nuclear pore complexes. As a result of the high resolution, you can see that this nuclear pore complex features eight molecular subunits. The eightfold symmetry comes out very clearly.[25] There is almost no comparison with the standard confocal recording.

Needless to say, if afforded this increase in spatial resolution, one obtains new information. In other words, new insights are gained with this microscope. I briefly describe research done in collaboration with virologists interested in the human immunodeficiency virus (HIV). Generally, viruses are about 30 to 150 nanometers in diameter.[17] So, if one wants to image them with a light microscope, there is no chance this will succeed—one will not see any details of protein distributions on the virus particles. A diffraction-limited fluorescence microscope would yield just a 250–350 nanometer sized fluorescence blur.

The human immunodeficiency virus (HIV) is about 140 nm in size. The scientists collaborating with us were interested in finding out how a protein called Env is distributed on the HIV particle (Figure 9).[26] In the normal recording, nothing specific is

![Figure 8. Nuclear pore complex architecture in an intact cell nucleus imaged by a) confocal microscopy (diffraction-limited), and b) STED nanoscopy.](image_url)
seen. In contrast, the high-resolution STED recording revealed that the protein Env forms patterns on the HIV particles. What has actually been found out in this study is that the mature HIV particles—those which are ready to infect the next cell—have the Env concentrated basically in a single place on the virus. It seems to be a requirement for HIV to be very effective. This is an example how new mechanistic insight was gained as a result of subdiffraction-resolution imaging.

Of course, a strength of light microscopy is that we can image living cells. Figure 10, shows a video rate recording with STED microscopy. These are synaptic vesicles in the axon of a living neuron. One can directly see how they move about and we can study their dynamics and their fate over time. It is clearly important to be able to image living cells. Live-cell imaging “at the extreme” is pictured in Figure 11. Here, we opened the skull of an anaesthetized mouse and looked into the brain of the mouse at the upper, so-called molecular layer of the visual cortex. This was a transgenic mouse, meaning that some of its neurons expressed a fluorescent protein, specifically the yellow fluorescent protein (YFP), and this is why this neuron is highlighted from the surrounding brain. The surrounding brain tissue is dark. Next we took sequential recordings and could see the receiving synaptic ends of the neuron—the so-called dendritic spines. They move slightly, and it is worthwhile zooming in on them. One discerns the spine neck and, in particular, the details of the cup-shaped end of the dendritic spines. STED microscopy allows these tiny morphologies to be visualized, such that we can observe their subtle temporal changes. I am very confident that in the not too distant future we will be able to image the proteins here at the synapse. I can also imagine that we will be able to give a visual cue to the mouse and observe how this actually changes the protein distribution directly at the synapse. Thus, in the end we should learn how neuronal communication or memory formation works at the molecular level.

Since STED microscopy relies on freely propagating light, one can perform three-dimensional (3D) imaging. It is
possible to focus into the brain tissue, for example, and record a 3D data set. Figure 12 shows a 3D super-resolution recording of actin in a living neuron in a so-called organotypical hippocampal slice.

Coming back again to the basics, to the spatial resolution, some of you will ask: What is the resolution we can get? What is the limit? Indeed, is there a new limit? So let us get back to the principle. The “name of the game” is that we turn off molecules everywhere but at the intensity minimum, at the central zero, of the STED beam. If we can make the region in which the molecules are still allowed to emit smaller, the resolution is improved; that is clear. The extent (or diameter) of the region in which the molecules are still “on” now determines the spatial resolution. Clearly, it cannot be described by Abbe’s equation any more. In fact, this diameter must depend on the intensity I which is found at the donut crest (Figure 13b,d) and on the threshold intensity I_s, which is a characteristic of the photon–molecule interaction. The larger their ratio (I/I_s) becomes, the smaller d will become. It is now easy to appreciate that this ratio must be found in the denominator, if we describe the resolution with a new equation which is now obviously required. In fact, d scales inversely with the square root of the ratio between the maximum intensity at the donut crest and the fluorophore-characteristic threshold intensity I_s. As a result, d tends to 0 for larger and larger values of I/I_s (Figure 13b,d).

In the situation depicted in Figure 13b, we cannot separate two of the close-by molecules because both are allowed to emit at the same time. But let us make the beam a bit stronger, so that only one molecule “fits in” the region in which the molecules are allowed to be “on”. Now the resolution limit is apparent: it is the size of a molecule, because a molecule is the smallest entity one can separate. This is not surprising! After all, we separate features by preparing their molecules in two different states, and so it must be the molecule which is the limit of spatial resolution. When two molecules come very close together, we can separate them because at the time one of them is emitting, the other one is “off” and vice versa.

It is worth noting that if all the “off” or dark molecules are entirely dark, that is, nonsignaling, detecting a single photon from a molecule is absolutely enough to know that there is a molecule present (at the minimum of the STED beam). The position of that molecule is entirely determined by the presence of the STED beam photons. These photons determine exactly where the molecule is “on” and where it is “off” (dark). The detected fluorescence photons only indicate the presence of a molecule, or many of them.

Does one typically obtain molecular spatial resolution, and what about in a cell? For STED microscopy right now, the standard resolution is between 20 and 40 nanometers depending on the fluorophore, and depending on the fluorophore’s chemical environment. But this is something which is progressing; it is under continuous development. With fluorophores which have close-to-ideal properties and can be turned “on” and “off” as many times as desired, we can do much better, of course.

In fact, there are such fluorophores—not organic ones, inorganic ones—which meet this requirement already. These are so-called charged nitrogen vacancies in diamond, fluorescent defects in diamond crystals which can be turned on and off an almost unlimited number of times. Imaging these, we managed to squeeze down the...
It is worth keeping in mind that the wavelength responsible for this result is 775 nanometers. So the region of emission is smaller than one percent, a very small fraction of the wavelength.

This may look like a proof-of-principle experiment, and to some extent it is. But it is not just that, there is another reason to perform these experiments [33,35,36]. The so-called charged nitrogen vacancies are currently regarded as attractive candidates for quantum computation: as qubits operating at room temperature [37,38]. They possess a spin state with a very long coherence time even at room temperature, which can be prepared and read out optically. Being less than a nanometer in size, they can sense magnetic fields at the nanoscale [39,40]. We inherently have nanosensors in here, and STED is perhaps the best way of reading out the state and the magnetic fields at the nanoscale. In the end, this could make STED an interesting candidate perhaps for reading out qubits in a quantum computer, or who knows … Development goes on!

Returning to the fundamentals, I emphasized that the name of the game is “on/off”, or keeping a fraction of the molecules dark for separation [30–32]. This is how we separate molecules, with a bright state and a dark state. Once it is clear that this is a general principle it is obvious that stimulated emission is not the only way by which we can play this “on/off game”. There must also be other “on” and “off” states in a dye which one can use to the same effect [22,28–30]. With this in mind, I browsed other textbooks and found that there are triplet states, long-lived dark states, and, of course, in chemistry textbooks, one will find that there is photoinduced cis–trans isomerization (Figure 15).

One might ask why use these special transitions that, unlike stimulated emission, are not found in absolutely any fluorophore, as special fluorophores are needed for this? After all, the transitions used in STED are truly basic: optical excitation and de-excitation. The two states between which...
these transitions are induced are the most basic states imaginable, namely the ground and the first excited state.

Indeed, it turns out that there is a strong reason for looking into other types of states and state transitions. Consider the state lifetimes (Figure 15). For the basic STED transition, the lifetime of the state, the excited state, is nanoseconds (Figure 15a). For metastable dark states used in methods termed ground state depletion (GSD) microscopy [41–43] (Figure 15b) the lifetime of the state is microseconds, and for isomerization it is on the order of milliseconds (Figure 15c). Why are these major increases in the utilized state lifetime relevant?

Well, just remember that we separate adjacent features by transferring their fluorescent molecules into two different states. But if the state—one of the states—disappears after a nanosecond, then the difference in states created disappears after a nanosecond. Consequently, one has to hurry up putting in the photons, creating this difference in states, as well as reading it out, before it disappears. But if one has more time—micoseconds, milli- or microseconds—one can turn molecules off, read the remaining ones out, turn on, turn off …; they stay there, because their states are long-lived. One does not have to hurry up putting in the light, and this makes this “separation by states” operational at much lower light levels [28, 41–43].

To be more formal, the aforementioned intensity threshold, \(I_s \), scales inversely with the lifetime of the states involved (Figure 15c): the longer the lifetime, the smaller is the \(I_s \), and the diffraction barrier can be broken using this type of transition at much lower light levels. \(I_s \) goes down from megawatts (STED), kilowatts (GSD), down to watts per square centimeter for millisecond switching times—a six orders of magnitude range. This makes transitions between long-lived states very interesting, of course. Here in the equation (Figure 15d), \(I_s \) goes down and with that of course \(I \) also goes down because one does not need as many photons per second in order to achieve the same resolution \(d \).

The \textit{cis–trans} isomerization is particularly interesting because it is found in switchable fluorescent proteins. We looked into this very early on, starting from 2003, to check whether we can use it for a STED-like recording. Eventually, I called it RESOLFT, for “reversible saturable/switchable optically linear (fluorescence) transitions” [28, 44–46], simply because I could not have called it STED anymore. There is no stimulated emission in there, which is why I had to give it a different name. The strength is not only that one can obtain high resolution at low light levels. Notably, one can use inexpensive lasers, continuous-wave (CW) lasers, and/or spread out the light over a large field of view, because one does not need such intense light to switch the molecules.

In this way, one can parallelize the recordings, meaning that one can make an array of many holes (intensity minima, “donuts”) at the same time and read out a large field of view quickly (Figure 16). It does not matter that one has many of these intensity minima at the same time. As long as they are each further apart than Abbe’s diffraction barrier, they can be read out simultaneously by projecting the signal generated in this array of minima onto a camera. Only a few scanning steps in one direction and in the orthogonal direction, and a super-resolution image of a large field of view is taken. In Figure 17, a living cell was recorded within two seconds with more than 100 000 “donuts”, so to speak, in parallel.

Notwithstanding the somewhat different optical arrangement, the key is the molecular transition. Selecting the right molecular transition determines the parameters of imaging. The imaging performance, including the resolution and the contrast level, as well as other factors, is actually determined by the molecular transition chosen [10].

Putting up the next question, what does it take to achieve the best resolution? Now let us assume one had asked this question in the 20th century. What would have been the answer? Well, the answer was unquestionably: good lenses. Sure, good lenses. Why? Because the separation of neighboring features was performed by the focusing of light. Then, of course, one needs good lenses to produce the sharpest focal...
spot of light at the sample here, there, and everywhere, and/or the sharpest focal spot of light anywhere at the detector. However, once one cannot produce an even smaller focal spot of light, this strategy has come to an end (Figure 18, top). Therefore, if one has several features falling within a diffraction-limited spot of light, one simply cannot do any better. Resolution is definitely limited by diffraction if one separates features by the focusing of light—no way to tell features, the molecules, apart, because everything overlaps on the detector (Figure 18, top).

So what was the solution to this problem? Do not separate just by focusing. Separate by molecular states, in the easiest case by “on/off” states. If separating by molecular states, one can indeed distinguish the features, one can tell the molecules apart even though they reside within the region dictated by diffraction. We can tell, for instance, one molecule apart from its neighbors and discern it (Figure 18, bottom). For this purpose, we have our choice of states that I introduced already (Figure 15) which we can use to distinguish features within the diffraction region.

In the methods I have described, STED, RESOLFT, and so on, the position of the state—where the molecule is “on”, where the molecule is “off”—is determined by a pattern of light featuring one or more intensity zeros, for example a donut. This light pattern clearly determines where the molecule has to be “on” and where it has to be “off”. The coordinates X,Y,Z are tightly controlled by the incident pattern of light and the position(s) of its zero(s). Moving the pattern to the next position X,Y,Z—one knows the position of the occurrence of the “on” and “off” states already. One does not necessarily require many detected photons from the “on”-state molecules, because the detected photons are merely indicators of the presence of a feature. The occurrence of the state and its location is fully determined by the incident light pattern.

Now the question comes up: How does this compare with the seminal invention first reported by Eric Betzig, based on the discovery of W. E. Moerner, that you can detect single molecules? In the PALM (“photoactivated localization microscopy”) concept (also called STORM or FPALM), there are two fundamental differences to STED-like approaches (Figure 19). First of all, it critically relies on the detection of single molecules. Secondly, unlike in the STED case, in the PALM case the spatial position of the on state is uncontrolled, totally stochastic. A molecule “pops up” somewhere randomly in space, a single molecule per...
diffraction-sized region, and it is in this way that the “on”/“off” state difference is created. But since one does not know where a molecule has turned to the on state, a pattern of light must be used with which one can measure the position. This pattern of light is the fluorescent light which is emitted by the molecule and imaged onto an array detector, usually a camera. The pixels of the camera provide the coordinate reference. Without going into the details, this pattern of emitted fluorescence light allows one to determine the molecule’s position with a centroid calculation.

An interesting insight here is that one needs a bright pattern of emitted light to find out the position of emission just as one needs a bright pattern of incident light in STED/RESOLFT to determine the position of emission. Not surprisingly, one always needs bright patterns of light when it comes to positions, because if one has just a single photon, this goes astray. The photon can go anywhere within the realm of diffraction, there is no way to control where it goes within the diffraction zone. In other words, when dealing with positions, one needs many photons by definition, because this is inherent to diffraction. Many photons are required for defining positions of “on”- and “off”-state molecules in STED/RESOLFT microscopy, just as many photons are required to find out the position of “on”-state molecules in the stochastic method PALM.

One is not confined to using a single donut (a single diffraction zone) in STED/RESOLFT. We can use a “wide-field” arrangement, meaning that we can also record a large field of view (compare the blue pattern in Figure 16). To this end, we parallelize the scanning using an array of intensity minima, such as an array of donuts. Again, the fundamental difference to the spatially stochastic methods is (Figure 20) that the positions where the molecules can assume the “on” or the “off” state are tightly controlled by the pattern of light with which we illuminate the sample. This is regardless of whether there is one molecule at the intensity minimum of the pattern, or three molecules; however many, it does not matter.

Although the PALM principle can also be implemented on a single diffraction zone only (i.e. using a single focused beam of light), it is usually implemented in a “parallelized” way, that is, on a larger field of view containing many diffraction zones. PALM parallelization requires that there may be only a single “on”-state molecule within a diffraction zone, that is, within the distance dictated by the diffraction barrier. However, the position of this molecule is completely random. Therefore, we have to make sure that the “on”-state molecules are further apart from each other than the diffraction barrier, so that they are still identifiable as separate molecules. While in (STED/RESOLFT) the position of a certain state is given by the pattern of light falling on the sample, the position in PALM is established from the pattern of (fluorescence) light coming out of the sample.

What does \(I/I_s \) in STED/RESOLFT stand for? \(I \) can be seen as the number of photons that one needs to ensure that there is at least one photon interacting with the molecule, pushing it from one state to the other in order to create the required difference in molecular states. \(I/I_s \) is, so to speak, the number of photons which really “do something” at the molecule, while most of the others just “pass by”. Similarly, in the PALM concept, the number of photons \(n \) in \(I/I_s = \sqrt{n} \) is the number of those photons that are detected, that is, that really contribute to revealing the position of the emitting molecule. In other words, in both concepts, to attain a high coordinate precision, one needs many photons that act.

Figure 20. To parallelize STED/RESOLFT scanning, a “wide-field” arrangement with an array of intensity minima (e.g. an array of donuts) may be used. The numbers of molecules at these readout target coordinates do not matter, while PALM requires that there may be only a single “on”-state molecule within a diffraction zone, that is, within the distance dictated by the diffraction barrier. (More precisely: the number of molecules per diffraction zone has to be so low that each molecule is recognized individually.) The position of each on-state molecule is, however, completely random in space. \(I_s \) can be regarded as the number of photons that one needs to ensure that there is at least one photon interacting with the molecule, pushing it from one state to the other in order to create the required difference in molecular states. \(I/I_s \) is, so to speak, the number of photons which really elicit the (on/off) state transition at the molecule, while most of the others just “pass by”. Similarly, in the PALM concept, the number of photons \(n \) in \(I/I_s = \sqrt{n} \) is the number of those photons that are really detected at the coordinate-giving pixilated detector (camera), that is, that really contribute to revealing the position of the emitting molecule. In other words, in both concepts, to attain a high coordinate precision, one needs many photons that act.
which they are jointly scrutinized by the detector. “Fluorescent” and “nonfluorescent” is the easiest pair of states to play with, and this is what has worked out so far.

One can take the point of view that in the 20th century it was the lenses which were decisive, and the lens makers ruled the field. One had to go to them and ask them for the best lenses to get the best resolution. But how is it today? No, it is not the lens makers. This resolution game is not about lenses anymore. It is about molecular states, and molecular states are of course about molecules. The molecules determine now how well we can image; they determine the spatial resolution, and that is not optical technology—that is chemistry (Figure 21). One might say that it is now the chemists who can take the best images. In a way this was initially a physics problem—the diffraction barrier certainly was, no doubt about it—which has now evolved into a chemistry topic.

This Nobel Prize was awarded for super-resolution fluorescence imaging. The enabling element being a transition between two states, the two states need not be fluorescent “on”/“off”, they could also be a pair of states “A” and “B” (Figure 22), like “absorption/non-absorption”, “scattering/non-scattering”, “spin up/spin down”, “bound/unbound” (as in the method called PAINT[9]), etc. Perhaps one can also imagine a super-resolution absorption microscope or a super-resolution scattering microscope, if one identifies the right states. The story continues, and I am expecting more of it to come. It has just begun!

Looking at Abbe’s equation (Figure 4), it was written in stone for so many years, but it cannot explain the fact that we now have a much higher spatial resolution. Fortunately, we can adapt Abbe’s equation very easily. We simply add the square-root factor, and now the good news is: the resolution goes down to the size of a molecule (Figure 15d). We can achieve image resolution at the molecular scale.

I am grateful to Steffen J. Sahl for editing the initial version of the transcribed original lecture, as well as to Mark Bates for further improvements. Last but not least, I would like to mention that I could not have told you about this development without the help of many very talented students and postdocs who have contributed to it. I thank them from the bottom of my heart for their contributions. I would like to add that many of them are still continuing in this field because it is very, very exciting.

How to cite: Angew. Chem. Int. Ed. 2015, 54, 8054–8066
Angew. Chem. 2015, 127, 8167–8181

“Coaligned Dual-Channel STED Nanoscopy and Molecular Diffusion Analysis at 20 nm Resolution”: F. Göttfert, et al., Biophys. J. 2013, 105, L01–L03.

“Microscopy and its focal switch”: S. W. Hell, Nat. Methods 2009, 6, 24–32.

“Nanoscopy with more than 100,000 ‘doughnuts’”: A. Chmyrov, et al., Nat. Methods 2013, 10, 737–740.

Received: May 7, 2015
Published online: June 18, 2015