Useful papers page 3

 NB Please only use the downloadable resources and academic papers on this website for your own personal study and tuition.
They are not to be multiply-distributed, or exploited for commercial use.

Super-resolution imaging

  1. Schermelleh, L et al (2019) Super-resolution microscopy demystified Nature Cell Biology 21/1: 72-84 Review
  2. Zimmermann, T (2017) Superresolution microscopy Encyclopedia of Life Science Review
  3. Kasuboski, JM et al. (2012)  Super-Resolution Microscopy: A Comparative Treatment Current Protocols in Cytometry UNIT 2.17 2.17.1-2.17.2
  4. Fessenden, M (2016) Illuminating life’s building blocks  Nature 533(7604): 565-8. = technology feature commentary
  5. Wegel, E et al (2016) Imaging cellular structures in super-resolution with SIM, STED and Localisation Microscopy: A practical comparison. Science Reports 6: 27290
  6. Demmerle, J et al (2015) Assessing resolution in super-resolution imaging Methods 88: 3-10
  7. Demmerle, J et al (2017) Strategic and practical guidelines for successful structured illumination microscopy Nature Protocols 12/5: 988-1010
  8. Lambert, TJ & Waters, JC (2017) Navigating challenges in the application of superresolution microscopy Jour. Cell Biol. 216/1: 53-63
  9. Richter, KN et al (2017) Review of combined isotopic and optical nanoscopy Neurophotonics 4/2: 020901
  10. Ward, EN & Pal, R (2017) Image scanning microscopy: an overview Jour. Microscopy 266/2: 221-228
  11. Schubert, V (2017) Super-resolution Microscopy – Applications in Plant Cell Research Front Plant Sci. 8: 531
  12. Turkowyd, B et al (2016) From single molecules to life: microscopy at the nanoscale Anal Bioanal Chem 408/25: 6885–6911
  13. Cox, S (2015) Super-resolution imaging in live cells Dev. Biol. 401/1: 175-181
  14. Montgomery, PC & Leong-Hoi, A (2015) Emerging optical nanoscopy techniques Nanotechnol Sci Appl. 8: 31-44
  15. Horrocks, MH et al (2014) The changing point‑spread function: single‑molecule‑based super‑resolution imaging Histochem. Cell Biol. 141/6: 577–585
  16. Yamanaka, M et al (2014) Introduction to super-resolution microscopy Microscopy (Oxf) 63/3: 177-192
  17. Hedde, PN & Nienhaus, GU (2014) Super-resolution localization microscopy with photoactivatable fluorescent marker proteins Protoplasma 251/2: 349-362
  18. Allen, JR et al (2014) Structured illumination microscopy for superresolution Chem. Phys. Chem. 15/4: 566-576
  19. Schropp, M et al (2017) XL-SIM: extending super-resolution into deeper layers Photonics 4/2: 33
  20. Nienhaus, K & Nienhaus GU (2014) Fluorescent proteins for live-cell imaging with super-resolution Chem. Soc. Rev. 43/4: 1088-1106
  21. Han, R et al (2013) Recent Advances in Super-Resolution Fluorescence Imaging and Its Applications in Biology Jour. Genet. Genomics 40/12: 583 – 595
  22. Cox, S & Jones, GE (2013) Imaging cells at the nanoscale Int. Jour. Biochem. & Cell Biol. 45/: 1669-1678
  23. Moerner, WE (2012) Microscopy beyond the diffraction limit using actively controlled single molecules Jour. Microscopy 246/3: 213-220
  24. Ball, G et al (2012) A cell biologist’s guide to high resolution imaging Chapter 2 in Methods Enzymology 504: 29-55
  25. Dedecker, P et al (2012) Widely accessible method for superresolution fluorescence imaging of living systems PNAS 109/27: 10909-10914
  26. Leung, BO & Cheu, KC (2011) Review of Super-Resolution Fluorescence Microscopy for Biology Appl. Spectrosc. 65/9: 967-980
  27. Galbraith, CG & Galbraith, JA (2011) Super-resolution microscopy at a glance Jour. Cell Science 124/10: 1607-1611  – slightly dated; good introduction
  28. Schermelleh, L et al (2010) A guide to super-resolution fluorescence microscopy Jour. Cell Biol. 190/2: 165-175  – slightly dated; good introduction; highly-cited paper
  29. Heintzmann, R & Ficz, G (2006) Breaking the resolution limit in light microscopy Briefings Funct. Genomics 5/4: 289-301
  30. Huang, F et al (2016) Ultra-high resolution 3D imaging of whole cells Cell 166/4: 128-140
  31. Millis, BA et al (2013) Superresolution imaging with standard fluorescent probes Curr Protoc Cell Biol. 60: Unit 21.
  32. Ouyang, W et al (2018) Deep learning massively accelerates super-resolution localization microscopy Nature Biotechnol. 2018 Apr 16. doi: 10.1038/nbt.4106. Institute Pasteur weblink
  33. Sengupta, P et al (2014) Superresolution imaging of biological systems using photoactivated localization microscopy Chem Rev. 114/6: 3189-202.
  34. Also see the Nobel prize lectures, below and this commentary.
  35. The Photonics special issue on super-resolution edited by three eminent scientists in the field, plus this video explanation by Jennifer Lippincott-Schwartz

Single molecule imaging

  1. Shashkova, S & Leake, MC (2017) Single-molecule fluorescence microscopy review: shedding new light on old problems Bioscience Reports 37/4: pii: BSR20170031
  2. Forties, RA & Wang, MD (2014) Discovering the power of single molecules Cell 157/1: 4-7
  3. Walter, NG et al (2008) Do-it-yourself guide: how to use the modern single-molecule toolkit Nature Methods 5/6: 475-489
  4. Coelho, M et al (2013) Single-molecule imaging in vivo: the dancing building blocks of the cell Integr Biol (Camb) 5/5: 748-58
  5. Sacconi, L et al (2006) Cell imaging and manipulation by nonlinear optical microscopy Cell Biochem. & Biophysics 45/3: 289-302

Expansion microscopy – the new kid on the block

  1. Strack, R (2015) Bigger is better for super-resolution Nature Methods 12/3: 169 – Commentary
  2. Engerer, P et al (2016) Super-resolution microscopy writ large Nature Biotechnol. 34/9: 928-930
  3. Chen, F et al (2015) Expansion Microscopy Science 347(6221): 543-548
  4. Gao, R et al (2017) Q&A: expansion microscopy BMC Biology 15:50
  5. Chang, J-B et al (2017) Iterative expansion microscopy Nature Methods 14/6: 593-599
  6. Chozinski, TJ et al (2016) Expansion microscopy with antibodies and fluorescent proteins Nature Methods 13/6: 485-488
  7. Tillberg, PW et al (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies Nature Biotechnol. 34/9: 987-992
  8. Zhang, YS et al (2016) Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. Scientific Reports 6: 22691

Airyscan papers

  1. Brief explanationImaging & Microscopy articleMarch 2014
  2. Airyscan white paper – from Zeiss
  3. Further detailed explantion – from Zeiss
  4. LSM 880 fast acquisition mode – from Zeiss
  5. Comparison with super-resolution – Dr. M. Sivaguru Carl Woese Inst. Genomic Biology
  6. Korobchevskaya, K et al (2017) Exploring the potential of Airyscan microscopy for live cell imaging Photonics 4/3:41
  7. Sivaguru, M et al (2016) Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen Microsc. Res. & Tech. doi: 10.1002/jemt.22732
  8. Li, Y et al (2017) Image scanning fluorescence emission difference microscopy based on a detector array Jour. Microscopy 266/3: 288-297
  9. Korobchevskaya, K et al (2016) Intensity weighted subtraction microscopy approach for image contrast and resolution enhancement Scientific Reports 6: 25816

Near-field imaging

      1. Near-field optical microscopy review (Lereu et al 2012)
      2. Betzig near-field paper development (Betzig et al 1986)
      3. Atomic Force microscopy (Francis et al 2010)

The Nobel Prize papers

The Nobel prize in Chemistry has been awarded to those working in microscopy for the discovery and development of GFP (in 2008 to Osamu Shimomura, Martin Chalfie and Roger Y. Tsien) and again in 2014 to to Eric Betzig, W.E. Moerner and Stefan Hell for the development of super-resolved fluorescence microscopy. The Nobel lectures these men gave are worth reading.

Super-resolution: development of STED by Hell; development by Moerner of single molecule microscopy and its use by Betzig. For the GFP papers, go here.

NB Please only use the downloadable resources and academic papers on this website for your own personal study and tuition.
They are not to be multiply-distributed, or exploited for commercial use.

Go back to the basics on page 1

Go back to Useful papers page 2

Go forward to Useful papers page 4

Go to the top